

Campus Networks Layer 3

IP address planning & Inter-VLAN routing

Author: Sami Ait Ali Oulahcen Nouakchott, Mauritania 17-22 February 2025

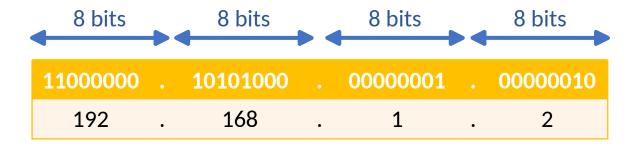
Internet Protocol addresses

IPv4 and IPv6 addresses quick review

Internet Protocol

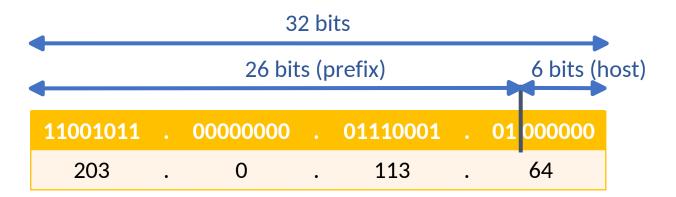
- Devices on the Internet communicate using Internet Protocol addresses
- Currently 2 types of Internet Protocol (IP) addresses:
 - IPv4: legacy Internet Protocol
 - IPv6: current Internet Protocol
- When we use both types on a network, it is called dual stack

IPv4 addresses

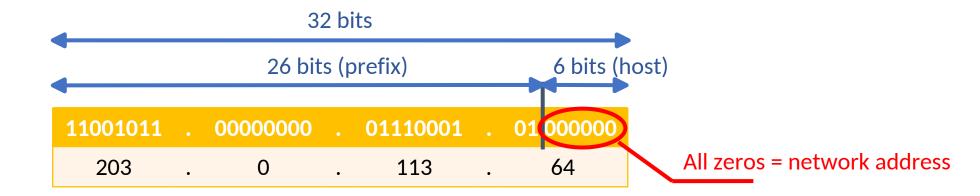

- 32-bits binary numbers
- Written as 4 decimals of 8 bits separated by dots (.)

11000000 .	10101000		0000001		00000010
192 .	168	•	1	•	2

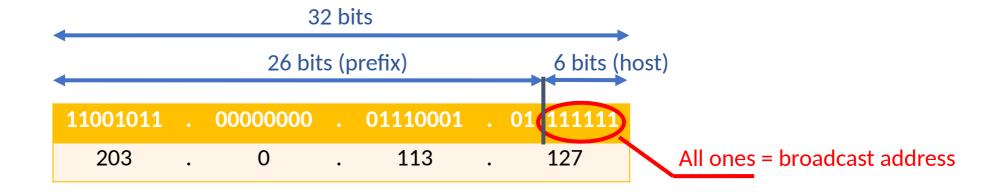
- Total number of IPv4 addresses is 2³² = 4,294,967,296
- But in reality, about 3,702,258,432 available after removing:
 - 0.0.0.0/8 Current network RFC 6890 and 127.0.0.0/8 Loopback
 - 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16 Private network RFC 1918
 - 224.0.0.0/4 IP multicast RFC 5771 and some others.

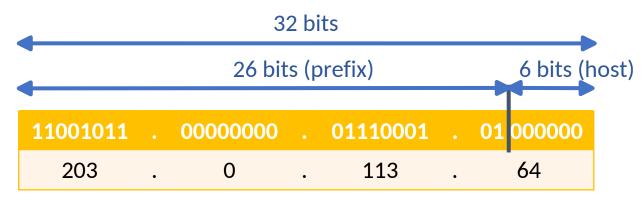

IPv4 addresses binary to decimals

Let's do some algebra



- Why is 10101000 = 168?
- $1x2^7 + 0x2^6 + 1x2^5 + 0x2^4 + 1x2^3 + 0x2^2 + 0x2^1 + 0x2^0 = 128 + 32 + 8 = 168$

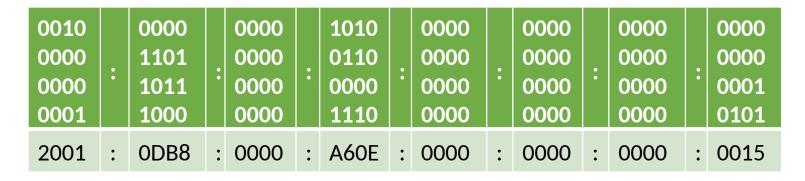

A group of contiguous IP addresses can be represented as a subnet
 203.0.113.64/26


• A group of contiguous IP addresses can be represented as a subnet 203.0.113.64/26

• A group of contiguous IP addresses can be represented as a subnet 203.0.113.64/26

• A group of contiguous IP addresses can be represented as a subnet 203.0.113.64/26

• Number of usable addresses is $2^6 - 2 = 62$


IPv4 rules

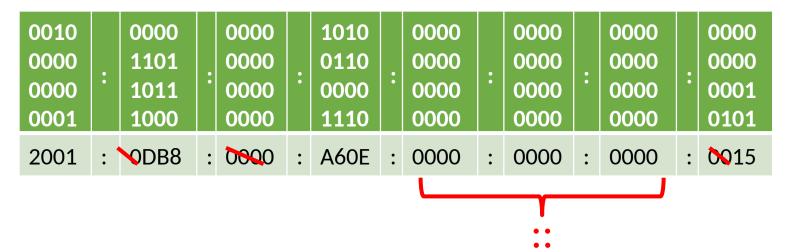
- Devices on the same layer 2 network should have the same prefix
- Devices on the same prefix, must have different host IDs
- The first and last addresses of a subnet are reserved (*)

(*) The only exceptions are point-to-point links i.e. /31s

IPv6 addresses

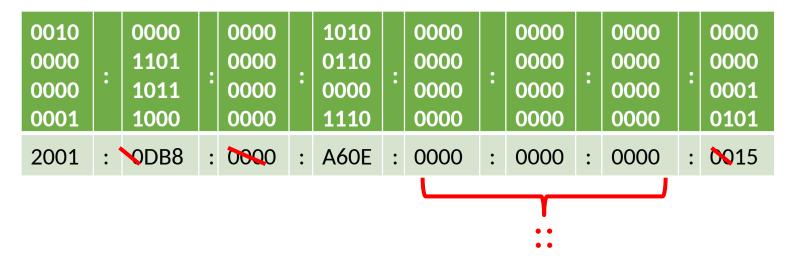
- 128-bits binary numbers
- Written as hexadecimal words of 16 bits separated by colons (:)

- Total number of IPv6 addresses: 2¹²⁸ = 340,282,366,920,938,463,463,374,607,431,768,211,456
- In reality the only routable addresses currently are in 2001::/3


IPv6 address conventions

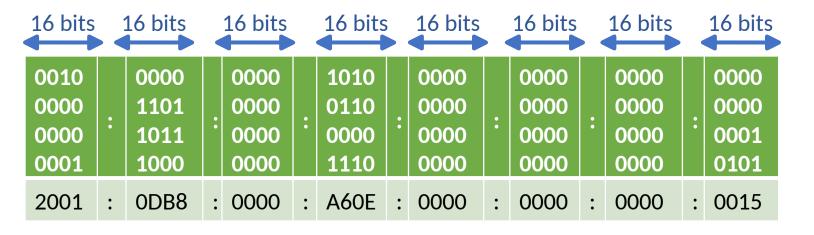
• Leading zeros can be dropped

0010 0000 0000 0001	:	0000 1101 1011 1000	:	0000 0000 0000	:	1010 0110 0000 1110	:	0000 0000 0000	:	0000 0000 0000	:	0000 0000 0000	:	0000 0000 0001 0101
0001		1000		0000		TIIO		0000		0000		0000		0101
2001	:	ODB8	:	0000	:	A60E	:	0000	:	0000	:	0000	:	0015


IPv6 address conventions

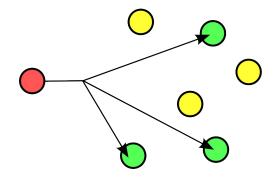
- Leading zeros can be dropped
- Largest number of all-zero words can be replaced by double colons (::)

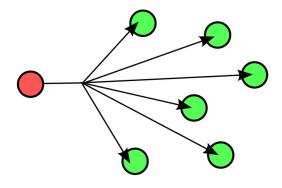
IPv6 address conventions


- Leading zeros can be dropped
- Largest number of all-zero words can be replaced by double colons (::)

• The result would be 2001:DB8:0:A60E::15

IPv6 binary to hexadecimal


Let's do some algebra



- Why is 1010 0110 0000 1110 = A60E?
- $1x2^3+0x2^2+1x2^1+0x2^0=10$ similarly 0110=6, 0000=0, and 1110=14
- Refer to table on the right for decimals above 10, and you get A 6 0 E

IPv6 multicast

- In IPv6, there is no **broadcast**, only multicast
- Examples:
- fe00::0 ip6-localnet
- ff00::0 ip6-mcastprefix
- ff02::1 ip6-allnodes (where RAs are sent)
- ff02::2 ip6-allrouters (for router discovery)
- ff02::3 ip6-allhosts
- :: all-interfaces

IPv6 rules

- Every subnet is a /64 (*)
- Devices on the same prefix, must have different host IDs
- First (all zeros) address is reserved (*)

• (*) The only exceptions are point-to-point links i.e. /127s

How to obtain IP addresses

From your REN or ISP

RIMER

• Directly from the RIR

IP address planning

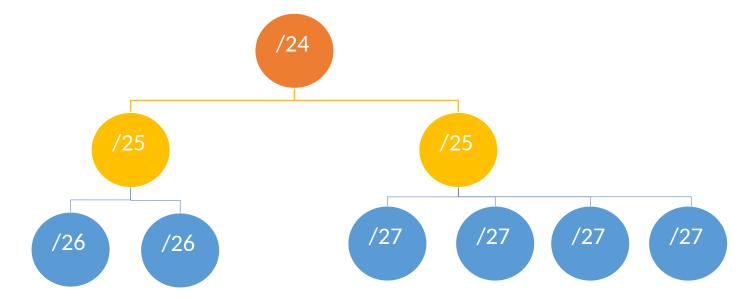
How to establish an IPv4/IPv6 address plan and corresponding VLANs

Establish an address plan

- The typical allocation for an end-site campus is:
 - /24 to /22 in ipv4
 - /48 to /44 in ipv6
- Usable VLAN numbers from 2 to 4096
- Numbering your buildings helps in assigning VLAN numbers:
 - Administration : Building 1
 - Engineering: Building 2
 - Arts: Building 3

Establish an address plan

- The typical allocation for an end-site campus is:
 - -/24 to /22 in ipv4 => 2^8 to 2^{10} => 256 to 1024 addresses
 - /48 to /44 in ipv6 => 2^{16} to 2^{20} => 65,536 to 1,048,576 subnets
- Identify the need for IP addresses in each part of the campus


Campus location	Number of devices
Network Core	100
Building 1	1000
Building 2	2500
Building 3	340
Building 4	450

Establish an address plan

- The typical allocation for an end-site campus is:
 - -/24 to /22 in ipv4 => 2^8 to 2^{10} => 256 to 1024 addresses
 - /48 to /44 in ipv6 => 2^{16} to 2^{20} => 65,536 to 1048576 subnets
- Identify the need for IP addresses in each part of the campus
- Address plan should be future-proof to avoid renumbering
 - => When subnetting, allow sufficient space for expansion

Subnetting

- When subnetting in ipv4, half your /24 will probably go to NAT
- For a healthy NAT, one IP for each 10-24 users
- We will use 203.0.113.0/24 and 10.0.0.0/8 for IPv4
- And 2001:db8:d1::/48 for IPv6

Usage	Subnets		
Public IPv4 allocation	203.0.113.0/24		
Private IPv4 Address space (RFC 1918)	10.0.0.0/8		

Usage	Subnets
Public servers	203.0.113.0/26
P2P links and future use	203.0.113.64/26
NAT	203.0.113.128/25
Core network	10.0.0/16
Building X	10. <mark>X</mark> .0.0/16
Management	10.250.0.0/16
IP cameras	10.240.0.0/16
IP phones	10.230.0.0/16

Usage	Subnets		
Public IPv4 allocation	203.0.113.0/24		
Private IPv4 Address space (RFC 1918)	10.0.0/8		

Usage			Subnets	
Public servers			203.0.113.0/26	
P2P links and future use			203.0.113.64/26	
NAT	VLAN	Usage	Subnets	
NOC	X11	Classrooms	10.X.11.0/24	
Building X	X13	Offices	10.X.13.0/24	
Management	X16	Labs	10.X.16.0/24	
IP cameras	X32	Wifi	10.X.32.0/24	
ir Callicias			1012 101010/ 10	
IP phones			10.230.0.0/16	

Usage	Subnets		
Public IPv4 allocation	203.0.113.0/24		
Private IPv4 Address space (RFC 1918)	10.0.0/8		

Usage		Subnets			
Public servers		203.0.113.0/	203.0.113.0/26		
P2P links and future	e use	203.0.113.64	203.0.113.64/26		
NAT		203 0 113 12	8/25		
NOC	VLAN	Usage	Subnets		
Building X	2501	Management for Building 1	10.250.1.0/24		
Management	2502	Management for Building 2	10.250.2.0/24		
IP cameras			•••		
IP phones	250Y	Management for Building Y	10.250.Y.0/24		

Usage	Subnets		
Public IPv4 allocation	203.0.113.0/24		
Private IPv4 Address space (RFC 1918)	10.0.0/8		

Usage		Subnets			
Public servers		203.0.113.0/26	203.0.113.0/26		
P2P links and future	use	203.0.113.64/26	203.0.113.64/26		
NAT		203.0.113.128/2	25		
NOC	VLAN	Usage	Subnets		
Building X	2401	IP Cameras for Building 1	10.240.1.0/24		
Management	2402	IP Cameras for Building 2	10.240.2.0/24		
IP cameras		••			
IP phones 240Y		IP Cameras for Building Y	10.240.Y.0/24		

Usage	Subnets
Public IPv6 allocation	2001:db8:d1::/48

Usage	Subnets
Public servers	2001:db8:d1:A203::/64
P2P links	2001:db8:d1:B203::/64
NAT	N/A
Core network	2001:db8:d1::/56
Building <mark>X</mark>	2001:db8:d1: <mark>X</mark> 00::/56
Management	2001:db8:d1:FA00::/56
IP cameras	2001:db8:d1:F000::/56
IP phones	2001:db8:d1:E600::/56

Usage	Subnets
Public IPv6 allocation	2001:db8:d1::/48

Usage	Subnets		
Public servers	2001:db8:d1:A203::/64		
P2P links	2001·4h8·d1·R203··/64		2001·db8·d1·R203··/64
NAT	VLAN	Usage	Subnets
Core network	X11	Classrooms	2001:db8:d1:X11::/64
	X13	Offices	2001:db8:d1:X13::/64
Building X	X16	Labs	2001:db8:d1:X16::/64
Management	X32	Wifi	2001:db8:d1:X32::/64
IP cameras	2001.upo.u1.i 000/ 50		
IP phones	2001:db8:d1:E600::/56		

Usage	Subnets
Public IPv6 allocation	2001:db8:d1::/48

Usage	Subnets		
Public servers	2001:db8:d1:A203::/64		
P2P links	2001:db8:d1:B203::/64		
NAT	NI/A		
	VLAN	Usage	Subnets
Core network	2501	Management for Building 1	2001:db8:d1:FA01::/64
Building <mark>X</mark>	2502		2001:db8:d1:FA02::/64
Management	2502	Management for Building 2	2001:ubo:u1:FA02::/04
IP cameras	•••		
ii cameras	250Y	Management for Building Y	2001:db8:d1:FA0Y::/64
IP phones	2001.upo.u1.L000/ 30		

Usage	Subnets
Public IPv6 allocation	2001:db8:d1::/48

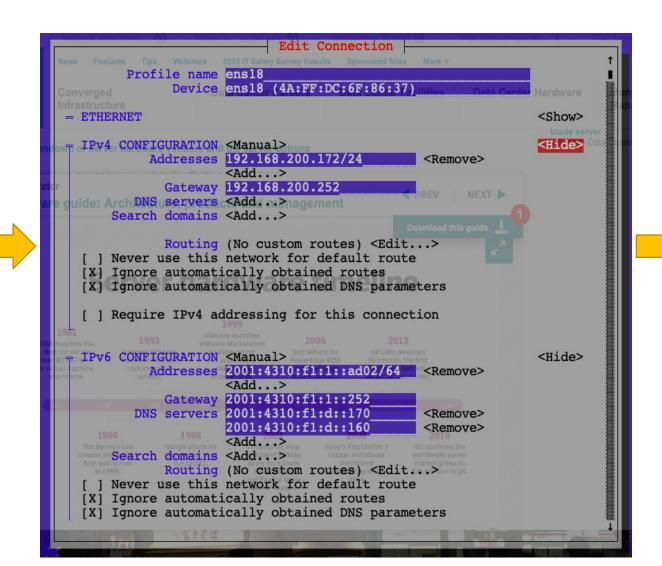
Usage	Subnets			
Public servers		2001:db8:d1:A203::/64		
P2P links		2001:db8:d1:B203::/64		
NAT	N/A			
Core network	2004.db0.d4/F/			
	VLAN	Usage	Subnets	
Building X	2401	IP Cameras for Building 1	2001:db8:d1:F001::/64	
Management	2402	IP Cameras for Building 2	2001:db8:d1:F002::/64	
IP cameras	2402	ir Carricras for Dulluling 2	2001.000.01.1 002/ 04	
ID phonos	•••	•	···	
IP phones	240Y	IP Cameras for Building Y	2001:db8:d1:F00Y::/64	

Static IP addressing on Debian

Modify the network interfaces file:

sudo vi
/etc/network/i
nterfaces

source /etc/network/interfaces.d/* auto lo iface lo inet loopback allow-hotplug ens18 iface ens18 inet6 static address 2001:db8:f1:d::230 netmask 64 gateway 2001:db8:f1:d::129 dns-nameservers 2001:db8:f1:d::53 2001:db8:f1:e::53 iface ens18 inet static address 203.0.113.230 netmask 25 gateway 203.0.113.129



Then restart the networking daemon:

sudo systemctl restart networking

Static IP addressing on RHEL / Rocky / Alma

Type "nmtui" then choose "Edit connection", choose and the interface want to you set up (in our case "ens18")

- To apply changes you have 2 options:
- If you are connected via console, you can Deactivate / Activate the interface in nmtui
- If you are
 connected via SSH,
 you can
 "systemctl
 restart
 NetworkManager"

Inter-VLAN routing

Routing traffic between VLANs at the core

Core switch

- Why it's always best to route inter-vlan traffic at the core:
 - Closer to your STP root
 - Can isolate infected VLANs
 - Easier for applying filters: who can see management network...
- Equipment needed is a router/firewall (router on a stick) or a layer 3 switch

Routed VLAN interfaces

• IP addresses on VLAN interfaces or sub.interfaces

```
interface ge11
no switchport
interface ge11.213
encapsulation dot1q 213
ip address 10.2.13.1/24
ipv6 address 2001:db8:d1:213::1/64

interface ge11
switchport mode trunk
switchport trunk allowed 213
interface vlan 213
ip address 10.2.13.1/24
ipv6 address 2001:db8:d1:213::1/64
```

- Used as a default gateway on all interfaces connected to the VLAN
- Routing datagrams according to:
 - static routes
 - routing protocol (IS-IS or OSPF)

Questions?